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Since the earliest days of proving the correctness of programs, predicates on the
program’s state space have played a central role. This role became essential when
non-deterministic systems were considered. The first (and still best known) source of
non-determinacy was provided by operating systems, which had to regulate the
cooperation between components that had speed ratios that were beyond our control.
Distributed systems have revived our interest in such configurations.

I know of only one satisfactory way of reasoning about such systems: to prove that
none of the atomic actions falsifies a special predicate, the so-called ‘global invariant’.
Once initialized, the global invariant will then be maintained by any interleaving of
the atomic actions. That solves the problem in principle; in each particular case,
however, we have to choose how to write down the global invariant. The choice of
notation influences the ease with which we can show that, indeed, none of the atomic
actions falsifies the global invariant.

An example will be given and discussed.

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

An accident introduced me 32 years ago to automatic computing, a topic that has fascinated
me ever since. As the years go by, I am beginning to appreciate the length of my involvement
more and more, since I owe to it a very lively picture of a sizeable part of the history of the
growth of a science. I have observed profound changes in our thinking habits, and I have found
those observations interesting and instructive. .

I do remember, for instance, one of my first efforts —in the mid 1950s — to come to grips
with what we would now call ‘repetition’. It was profoundly inadequate, and in the course
of this talk I hope to explain to you why. Very operationally, I tried to deal with it as a
recurrence relation: one instructs the machine to start with an initial value x, and to generate

A

from there enough values from the sequence further defined by the recurrence relation

p
s

Why did I do that? I think because I was glad to recognize something familiar, and in those
days familiarity was more important than significance. The knowledge I had at the time was
already sufficient to doubt the significance, but I do not remember doing so. You see, a well

SOCIETY

known concept was the ‘order’ of a recurrence relation, the Fibonacci sequence being given
by the second-order recurrence relation

THE ROYAL

Fn+2 = 1:ln+1 + Fn;
but any programmer would implement this by

(A> B)n+1 = (A + B’ A)n’
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492 E.W.DIJKSTRA

i.e. a first-order recurrence relation! In short then, I should have already been suspicious. But
it was the prevailing view in that decade: not only FORTRAN but even aLcoL 60 included only
repetitive constructs of which the so-called ‘controlled variable’ was an essential ingredient.

My estimation is that the introduction of the so-called ‘ controlled variable’ has delayed the
development of computing science by almost a decade. I got very suspicious in the late 1960s
when I discovered that the ‘dyed-in-the-wool’ FORTRAN or ALGOL programmer had been
conditioned so as to be unable to design the elegant solution to what became known as The
Problem of the Dutch National Flag. The fact that, in the 1970s, the Euclid algorithm for the
g.c.d. of the positive integers X and Y was widely quoted as a paradigm, I can only explain
by the circumstances that it is the simplest program that demonstrates so convincingly the
inappropriateness of the notion of the ‘controlled variable’.

I now write the Euclid algorithm in the form

| [%,y:int
3%,y =X,Y
;dox > y—>x:1=x—y
ly>x—>y:i=y—x
od
11

This is evidently a repetition in which there is no place for a ‘controlled variable’ counting
something of relevance or controlling termination, or both.

Another incident — A. W. Dek’s invention of the real-time interrupt — introduced me 25 years
ago to non-determinacy. My first major concern was to show that saving register contents at
program interruption and restoring them at program resumption could not be corrupted by
the occurrence of a next interrupt. The arguments required were very tricky, so tricky as a
matter of fact that I was not surprised at all when I found flaws in the designs of the interrupt
facilities of later machines such as the CDC 165 and the IBM 360. I experienced the problems
caused by the unpredictable interleaving as completely novel ones, not suspecting that, about
a decade later, they would be tackled by the same techniques that would then be used for
reasoning about repetitions.

I am, of course, referring to the technique of the so-called ‘invariant’ as illustrated in the
following type of annotation of a repetition (assertions being written within braces)

{P}
doB—{P A B}S{P}od
{P A-B}.

In words: if assertion P, guard B and statement S are such that the additional validity of B
guarantees that execution of S does not destroy the validity of P, then the whole repetition
do B S od will not destroy the validity of P, no matter how often the repeatable statement S is
repeated.

Now, if we have several clauses B—S, none of which destroys the validity of P, the validity
of P will not be destroyed no matter how often and in what order they are repeated. In other words,
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the pattern appropriate for reasoning about repetitions is straightforwardly able to cope with
thenon-determinacy thathas to be absorbed by the operating system for, say, a multiprogrammed
installation.

The technique has been used rather constructively in the design of the THE Multiprogramming
System to derive the ‘synchronization conditions’ (i.e. guards) that would ensure, for instance,
that no buffer would become emptier than empty or fuller than full. At the time we did not
know the axiom of assignment; we only knew what it entailed for simple assignment statements,
such as n := n+1, and equally simple predicates, such as n < N. This was in the first half of
the 1960s.

In the second half of the 1960s the method was formalized for deterministic sequential
programs by R. W. Floyd (1967) and by C. A. R. Hoare (1969). Floyd included proofs of
termination, but addressed himself to programs that could be expressed by arbitrary flow charts.
(This latter generality was not too attractive. In the control graph one had to select a set of
so-called ‘cutting edges’, i.e. a set of edges such that their removal would leave a graph with
no cycles, and to each cutting edge a proof obligation corresponded. The awkward thing is
that for an arbitrary control graph the problem of determining a minimum set of cutting edges
is most unattractive.) Hoare’s subsequent contribution was twofold : on account of the structure
of the axiom of assignment he definitely decided in favour of so-called ‘backwards reasoning’ —
Floyd had left this choice open —and he tied the proof obligations in with the syntactic
constructs for the flow of control. (Ironically, he confined himself to partial correctness, though
the problem of finding a minimum set of cutting edges — which are required for termination
proofs — had been reduced to triviality by the sequencing discipline he had adopted.) All this
was synthesized in the early 1970s by myself, and my ‘guarded commands’, besides forming
a basis for a calculus for the derivation of programs, introduced non-determinacy into
conventional sequential programming.

Central to this game was the formal expression and manipulation of so-called ‘assertions’
or ‘conditions’, i.e. predicates that contained the coordinates of the program’s state space as
free variables, for example to derive for a program fragment the precondition corresponding
to a given post-condition. (It is this direction of the functional dependence to which the term
‘backwards reasoning’ refers. In addition to a simpler axiom of assignment, the pragmatic
advantages of backwards reasoning are twofold. It circumvents undefined values since for any
program fragment the pre-condition is a total function of the post-condition, whereas the
post-condition is, in general, a partial function of the pre-condition. Furthermore, the calculus
includes non-determinacy at no extra cost at all.)

For the formulation and manipulation of these conditions, the predicate calculus became
a vital tool; so much so, that during the last decade it became for many programming
computing scientists an indispensable tool for their daily reasoning. (In passing I may mention
my strong impression that those computing scientists may very well have been the first to use
the predicate calculus regularly. Mathematicians, and even logicians, for whom, for instance,
the facts that equivalence is associative, that disjunction distributes over equivalence, and that
conjunction distributes over non-equivalence, belong to their active knowledge, are extremely
rare; I have never met one. Without intimate knowledge of such basic properties of the logical
connectives one can hardly be expected to be a very effective user of the predicate calculus;
hence my strong impression. In retrospect I found rather shocking the conclusion that as far
as the mathematical community is concerned George Boole has lived in vain.)

The extensive use of the predicate calculus in program derivation during the last decade has
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had a profound influence, the consequences of which are still unfathomed. It turned program
development into a calculational activity (and the idea of program correctness into a
calculational notion). The consequences are unfathomed because suddenly we find ourselves
urgently invited to apply formal techniques on a much greater scale than we were used to. It
turns out that the predicate calculus only solves the problems ‘in princple’: without careful
choice of our extra-logical primitives and their notation, the formulae to be manipulated have
a tendency of becoming unmanageably complicated. As a result, each specific problem may
pose a new conceptual and notational challenge. By way of illustration, I shall show an extreme
example from the field of distributed programming; the example is extreme in the sense that
almost all the manipulations of the derivation belong to the extra-logical calculus of regular
expressions.

We consider a network of machines that can send messages to each other. Each machine
is in one of three states, namely

n for ‘neutrally engaged’,
d for ‘delayed’, or
¢ for ‘critically engaged’.

The objective is to ensure that at most one machine at a time shall be in state c. A critical
engagment lasts for only a finite period and is immediately followed by a neutral engagement
of the machine in question. Between a neutral engagement and the subsequent critical
engagement a delay may occur in view of the requirement that at any moment at most one
machine be critically engaged (called ‘mutual exclusion’). The implied synchronization has
to be implemented in such a manner that no delay lasts forever (called ‘fairness’).

We introduce a single token, either held by one of the machines or being sent from one
machine to another. Mutual exclusion is then achieved by maintaining the truth of the

predicate
a critically engaged machine holds the token.

The machines maintain this by (i) not initiating a critical engagement unless holding the token,
and (ii) not sending the token to another machine while being critically engaged.
Furthermore each machine maintains

the machine holding the token is not delayed

by (i) skipping the delay upon termination of a neutral engagement while holding the token,
and (ii) initiating a critical engagement upon receipt of the token while delayed. Fairness is
therefore ensured when each delayed machine receives the token within a finite period of time.
Consequently, there must be some means of passing the token from one machine to another.
But we do not want the token to pass unless necessary. We therefore also need one or more
signals, which are sent by delayed processes to indicate interest in obtaining the token.

The rest of this example deals with the control of the movement of the token and signals.
To this end the machines are connected by links into a ring, of which the two circular directions
are called ‘to the left’ and to the right’, respectively. The token is sent to the left and signals
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are sent to the right. Each link connecting two neighbouring machines in the ring is in one
of three states, namely

u for ‘unused’,
t for ‘carrying the token to the left’, or
s for ‘carrying a signal to the right’.

The last two states are postulated to last for only a finite period of time.

The computation will be broken up into atomic actions. (An atomic action is the same type
of idealization as the ‘point mass’ in physics.) Each atomic action is performed by one of the
machines and involves a state change for that machine and for one or both of its adjacent links.
There are four kinds of atomic action to be designed, those which take place:

n) upon completion of a neutral engagement,
¢) upon completion of a critical engagement,

s) upon arrival of a signal,

(
(
(s)

(t) upon arrival of the token.

(We need not bother about ‘completion of a delay’ since this will be subsumed by the arrival
of the token; similarly the ‘completion’ of the state ‘unused’ for a link is subsumed in sending
either the token or a signal over that link.)

Our invariant for the whole system is, loosely speaking, ‘the ring is in a permissible state’,
but that is only helpful provided we have a very precise characterization of the set of permissible
states. Instead of giving this characterization in advance as an invariant predicate, we shall
derive the set of permissible states as the transitive closure of the atomic transitions, starting
from a given initial state, namely: all machines neutrally engaged, all the links unused, and
the token residing in one of the machines.

Immediately the question arises how to characterize sets of ring states. We shall represent
a ring state as a string in which machine states and link states alternate, with the understanding
that the left end of the string is adjacent to the right end.

We can now characterize a set of ring states by writing down a grammar for representative
strings. In this example we shall use the grammar of ‘regular expressions’, though in fact we
are concerned only with strings of fixed length (twice the number of machines).

It will turn out to be handy to give the machines one of two colours, either black (b) or
white (w), and a machine state will be coded by prefixing one of the three states n, d or c,
by one of the colours b or w. Blackness of a machine indicates that interest in the token exists
to the left. The machine holding the token will be identified by writing its colour with the
corresponding capital letter. Initially all machines being white, we can characterize the unique
initial state by the regular expression

—(wnu)* Wnu- (0)

(Note: if a regular expression is used to characterize a set of ring states, we shall surround it
by a pair of dashes. This implies, for instance, that (0) is equivalent to

— (uwn)* uWn - 2

In state (0), only completion of neutral engagements is possible. For the time being we confine
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our attention to the more interesting case of such completions taking place in machines not
holding the token and propose the transition

wn u—>wd s , (n.0)

i.e. a white machine without the token completes its neutral engagement by becoming delayed
and sending a signal over the link to its right. (Transition (n.0) only caters for the situation
that a “wn’ has a ‘u’ to its right.)

The transitive closure of (0) under (n.O0) is

—(wnulwds)*Wnu- (1)

in which [ (which syntactically has been given the lowest binding power) should be read as
‘or’. Note that (1) is equivalent to

—(wnulwds (wnu)*)* Wnu-
For the arrival of a signal at a white neutral machine we propose the transition
swnu—ubns , (s.0)

i.e. the machine transmits the signal and blackens itself. The transitive closure of (0) under
(n.0) and (s.0) is given by

—(wnulwd (ubn)*s)*Wnu-

Closing this further under

ubn—u bd (n. 1)
s wd —u bd (s. 1)

yields —(wnulwd (ubnlubd)*s)* Wnu- ,
which we record as —H* Wnu- with (2)
H=wnulQs with (3)
Q=wd (ubnl ubd)* . (4)

We note that the grammars H, HH*, H* and H* Q (note the absence of dashes: these
grammars correspond to sets of strings) are also closed under the four transitions considered
so far. (The reader is not expected to see this at a glance: the formal verification of the above
claim requires a short calculation.) Furthermore we note that under the transitions given so
far, the transitive closure of the string wn u H* equals H H*.

Let us now look at the more interesting case that a signal arrives at the machine holding
the token. The only way in which we can make the substring s Wn explicit in (2) is by adding
the superfluous term Q s Wn u

—H* (WnulQsWnu) - R
which we can close under sWnu—twnu (s.2)

by applying (s.2) now as rewrite rule:

—H* (Wnul Qtwnu) -
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As a result of the emergence of a new instance of wn u, this is no longer closed under the previous
transformations. But because the ring is cyclic, we can rewrite this as

—H* (WnulQt(wnuH*)) -

and the closure of this yields

—-H* WnulQtH) - . (5)
Closing (5) under Wnu—->Wcu (n.2)
obviously yields -H* WnulWculQtH) - , (6)

which is also closed under the inverse
Wcu—>Wnu . (c.0)

With the introduction of the term Wc u we have created the possibility of a signal arriving
at the critically engaged machine (which holds the token). Observing that in (6) the substring
s Wc can only occur in Q s Wc u, adding this as a superfluous term, and applying the transition

s Wcu—uBcu (s.3)
as rewrite rule, we derive the closure

-H* WnulWculQtHIQuBcu)- . (7)

(Because we lack a full regularity calculus we did not apply it. It is instructive to know that,
as a result, grammars (5), (6) and (7) are not fully closed.)

The introduction of the term Bc introduces a new form of critical engagement. When this
terminates, we require that the token be sent to the left

uBcu—->twnu . (c.1)

Since the resulting Q t wn u is subsumed by the preceding Q t H, (7) is closed under (c. 1) as
well. ‘

We leave to the reader the verification that (7) is also closed under the remaining three
transitions, which enumerate how the token can arrive:

wd t—>Wcu (t.0)
ubnt—>twnu (t.1)
ubd t—>uBcu . (t.2)

Since (7) tells us that t has a string Q to its left, which may end only in these three different
ways, the construction of the closure and of the list of transitions that might be needed has now
been completed. "

Inspection of (7) shows that the condition of mutual exclusion is satisfied. It also enables
us to convince ourselves that each delay will be of finite duration. For that purpose we associate
with a delayed machine the string of (alternating) links and machines to its right, up to and
including the machine that holds the token or the link that carries it. For that string we define
k by

k = the number of elements in the string + the number of white machines in the string.
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To begin with we observe that k = 0 and that none of the transitions increase k. We now
convince ourselves that k decreases within a finite period of time, given that the states s, t and
¢ are of finite duration: from (3), (4) and (7) we conclude that the delayed machine occurs
ina Q;

(i) for a Q in H, the string contains an s, and (s.0), (s. 1), (s.2) or (s. 3) will decrease k;

(ii) for the Q in Q t H, (t.0), (t. 1) or (t.2) will decrease k;

(iii) for the Q in Q u Bc u, (c. 0) is inapplicable and (c. 1) will decrease k, and from (7) we
conclude that this case analysis has been exhaustive. This concludes (the compact presentation
of) our example.

RETROSPECTIVE REMARKS

In the calculations presented, the machines themselves have remained anonymous. We could
have numbered them from 0 to N— 1, but invite the reader to try to-visualize what our invariant
would have looked like, had we used quantifications over machine subscripts! It would have
been totally unmanageable. (Not only did we leave the individual machines anonymous, but
even their number is not mentioned in the analysis: for a ring of N machines, only the strings
of length 2N that belong to the grammar (7) are applicable. A fringe benefit is that very small
values of N do not require special analysis. To pay for these benefits, we have the trivial
obligation to show that no transition changes the number of machines.)

After the decision to try to use regular expressions, it took me several iterations before I had
reached the above treatment. My first efforts contained errors, due to my lack of experience
in using the ‘regularity calculus’ for deriving a transitive closure under rewrite rules. The lack
of experience was made more severe by the fact that the same language can be characterized
by many different regular expressions: for instance, (a I b)*, (al b lab)* and (a l b a*)* are
all equivalent. In the beginning I experienced this great freedom as a nuisance, but now I think
this was naive, since precisely these language-preserving transformations enable us to massage
a regular expression into a form suitable for our next manipulation. Equivalences lie at the
heart of any practical calculus.

Finally, it took me quite some time before I discovered the proper abbreviations to introduce.
(H and Q, easy to defend in hindsight, could have been chosen much earlier, had we had more
familiarity with the regularity calculus.)

CONCLUSION

I mentioned that, owing to the calculational approach to program design, each specific
problem may pose a new conceptual and notational challenge. The example given has been
included to give the reader some feeling for the forms that challenge may take. I called the
consequences unfathomed, the reason being that the machines executing our programs are truly
worthy of the name ‘general purpose equipment’ and that, consequently, the area that calls
for the effective application of formal techniques seems to have no limit.

The example illustrating the use of the regularity calculus was developed under the critical
inspiration of the Tuesday Afternoon Club, and of F. E. J. Kruseman Aretz in particular. It
was a privilege to write half of the above with A. J. M. van Gasteren looking over my shoulder.
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Discussion

R. S. BirD (Programming Research Group, Oxford University, U.K.). What intuitions lay behind the
invention of the coloured states black and white?

E. W. DyksTrA. Clearly the receipt of a signal, i.e. the obligation to send or transmit the token,
has to be recorded. Under such circumstances I find ‘colouring’ objects a handy metaphor.
It makes it easy to visualize and to talk about, and, furthermore, one can start colouring without
knowing how many colours will eventually be needed. I remember the design of a mark-scan
garbage collector in which reachable nodes changed during the marking phase from white to
black via the intermediate colour grey. I used the same metaphor in the 1950s, when I designed
an algorithm for the shortest path. Clearly the metaphor suits me.

M. H. RoGeRrs (School of Mathematics, University of Bristol, U.K.). Does Professor Dijkstra hold
out any hope for automating the procedure of choosing suitable global invariants, at least for
some range of programs?

E. W. DijkstrA. No, not much. The example I showed is in this respect telling: the choice of
notation was already critical.

O.-]. Dant (Institute of Informatics, Blindern, Oslo, Norway). I notice that in this development the
invariant is an end result, not an initial idea. Can Professor Dijkstra comment on that? When
is this an appropriate mode of development?

E. W. DijksTrA. The reason to derive the invariant as I went along was probably twofold.
First, it was too complicated to be guessed or postulated. Second, I wanted this time to have
the strongest invariant so as not to have the program cater for situations that could not arise.
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